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ABSTRACT

A two-dimensional flow governed by the incompressible Navier-Stokes equations with a
steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated.
The behavior of the flow and its transition states as the Reynolds number Re varies is inves-

tigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown

to take place in the flow as Re varied. Two main regimes of the flow have been observed:

small and large scale structure regimes corresponding to different ranges of Re. Each of
the regimes includes a number of quasiperiodic, chaotic and relaminarization windows. In

addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spa-

tially disordered, but temporally steady states have been discovered in large scale structure
regime. Features of the diverse cases are displayed in terms of the temporal power spectrum,

Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.

'Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1 Introduction

It is now well estalblished that a number of dissipative chaotic fluid flows

may requiiire rel ati velyv few dimiensions for thieir (lescri pt ion . Thlis Im s b een

examined perhaps iii greatest dletail for fluid models such as the C iiizlirg-

Landau (G-L) equation 5 -8, an equation which results from the study of the

critical p)oint in a variety of stability problems'". For closed fluid systems

such as Rayleigh-3nard (R-13) convection and Taylor-Couette flow there is

abundant evidence that the early stages of chaos are low (limensimnl. For

IZ-1B coiv(Ttion there also exists a numerical simution which detais the

variation of (limensionl with Rayleigh Dumber1 3 .

In this paper we consider a simple fluid flow which exhibits chaotic beliav-

ior and which is amenable to detailed examination. This flow, governed by

the i ncomp~ressi ble Navier-Stokes equations, Is generatedl andI n imintmaine bv

a spatially periodic tie indepenlent forcinig of the fluiid . It is son et,1i ines Re-

ferred to as the IKolmiogorov flow (Arnold aliil Meslalki"i'). T[le staiklity of

the primary flow hias b~eeni reported oni by Mesluilkiii and Sia' iind Greenl"

'[hat flow is known t~o becomie istable at a critical R eynoldls number,.H(,. of

V-2 1516evo ild wic i stat iona v llua paIei a(ea.' It snIln 1\.

high Rc thle ce'1Lti Ia mpter 'ii it self becomles 1 nista 1ble amid thle Homii n' lw

is mimi.stealdy and chiaoh c. ;111(1nai' and 1athielor' av slitwn1 111ha tw



dimensional turbulent flows exhibit an energy cascade toward low wavenum-

bers (the infamous reverse cascade) and an enstrophy cascade toward high

wavenumbers. This phenomenon is apparent in our calculations. An alter-

nate view of this effect, in the present instance, is that the flow is unstable

to long wavelength disturbances. The general instability of short wavelength

structures to long wavelength disturbances has been investigated by Yakhot

and Sivaskinsky, and under sufficiently anisotropic conditions, their study

lead to the notion of negative viscosity for the long wavelengths' 2 1, since

the growth rate is proportional to the square of the wavenumber.

Our investigation is in large part numerical in nature. We examine in

some detail the behavior of the flow and its transition states for a range of the

bifurcation parameter Re. We use Poincare sections to examine the chaotic

attractor of the flow, and apply the INaplan-Yorke formula22 to calculate

the dimension of the chaotic attractor when it is possible. A number of

remarkable features of the flow were discovered. These include windows of

relamUinarization in the parameter space, chaotic windows with n oii-cr.odic

attractors and spatially disordered but temporally steady states.

We will be careful throliglhol tI is paper to use the term, eliholic instead of

I;,, ,rill tin rlul, /it. III particular we are r,'feriI ,v Ito flows whil when looked]

al III t Ile t i the doinaill Imave Ihro l( a (I viln r )rir\ " mect Ia. 'llese flows also

exhilbit setisitive lelenden e oi unitial lata (114ey Ihave posii e lvapinnm

2



exponents). Thus by generally accepted criteria the flows are temporally

chaotic. However, as will be seen, relatively few spatial Fourier modes are

active and we say we have chaos rather than turbulence. Nevertheless the

flow is chaotic in its Eulerian description and should not be confused with

Lagrangian turbulence23 -2 in which the velocity fields are to a high degree

laminar.

Recently we became aware of the investigation of the Kolmogorov Flow

by She26'27 . While there is some unavoidable overlap, the two investigations

are largely complimentary. She's work is also mainly numerical and concen-

trates on the high end of the Rc range. (A minor difference is thiat he uses

a higher value for the frequency of the forcing function.) The mathemati-

cal tools used also differ. We will make extensive use of the power spectra,

Poincare sections, Lyapunov spectra and flow visualizations for the investi-

gation, while She relies mainly on time series and phase portraits. Several

issues are viewed differently by us and we comment on these in the text.

She's frther work done in collaboration with Nicolaenko is concentrated on

the syinietry breaking lioioclin ic cliaos2 s ' occurring beyond the lc range

covered in this study. Aooession For
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2 Kolmogorov Flow

We consider the forced incompressible Navier-Stokes equations in two di-

mensions,

&~u1 + v' - V'-u0 (2.1)

-d + VP'/p = +/2 u'±xsinky'e, (2.2)
dt'

In preparation for the normalization given below, dimensional quantities are

denoted by primes, e, denotes the unit vector in the x-direction. This system

has the solution or fixcd point,

u' = U' = Xe sin ky'. (2.3)

k 2v

A Reynolds number for the flow may be naturally based on the maximum

speed of this field, >xluk 2 and the length scale k- ', thus

Re = x/(k3 i2). (2.4)

(A Reynolds could be based on the wavelength and maximum speed in which

case 27,IRe is the Reynolds number).

The linear stability of (2.3) can be analyzed by writing

' U' + hu'(y) exp(oik."4- (t) (2.5)

anld i v est igatig te resilt ing Orr-Soiineifehd cpItll ilo gollttll I)V Ililtariza-

tio in tl he simill Iwot i(, lr t l ln, 611" . It is found tlti. ins ablihlv tirsi sOs in

"I



at1
5 , 16

Re = Re, = V2 (2.6)

and is due to disturbances of infinitely long wavelength. Moreover, it can be

shown that disturbances with cxk > 1 never destabilize U'.

Thus according to the stability analysis, the domain must be large in

some sense in order for us to include growing modes. For computational

purposes we fix the domain size and regard the spatial forcing frequency

as the bifurcation parameter. With this in mind we choose the following

normalization,

u = vk 2u'Ix, x = kx'/n, t = xt'/(nkv),p = p'V2k 4/X 2, (2.7)

where n is an integer which specifies the spatial frequency of the forcing.

Under this normalization the Navier-Sto, cs ,uquations become,

'-7 =0 (2.8)

du 1 2 n211t + vtp = V u + ~e i i (2.9)+-- - e, sin ny ,.g

with

2 k /(v 2 k 3 ) = I? C (2.10)

the b fillrcation pa ra nieter. Ii this forniat. thle critical vali eof Q is

1 = . v'1 (2.1 1)



Let us now briefly discuss the symmetry groups for the solutions of these

equations which we will refer to as the Kolmogorov flows3 . There are in fact

two groups, one discrete and the other continuous.

Referring back to the notation of (2.9), n refers to the number of vertical

cycles in the horizontal forcing. If [u(x, y, t), v(x, y, t)] = u is a solution then

gku= [()kzl Hkx, y k) ( ks)] k 0,.. .,2n -1,

(2.12)

are also (independent) solutions of the problem, i.e. they satisfy the equations

and conditions of the prol)lem. The generator of this cyclic group, g, is a

glide-reflcction32 of half wavelength. In addition rotation through 7- is another

group generator, i.e.

Hi = [-u(-x, -y), -v(-x, -y)] (2.13)

is also a solution. In all there are 4n elements in the discrete symmivietry

group for the Nolmogorov flow. Thus for the case being considered,. n= I,

we obtain a sixteen-fold increase in the number of possible solutlions which,

we can viw.

The remaining symfilet, ry group is the group of trallslat lions in the .r-

(directioIns, i.e. if u is a soliltion thien

"1, 1, y)l 4- 1  (2.1 1)

;ire also sohitliolls to t If, prol,,ni for ill 01 < I "2 1.



3 Computational Method

Based on the normalization given in the previous chapter we consider the

computational domain

0 < x,y<2, (3.1)

with periodic boundary conditions in the two directions (so th, , flow lies on

the torus).

The natural method of choice for the investigation of (2.8,9) under the

2w--periodic boundary conditions is the pseudo-spectral method using Fourier

expansions33 . All derivatives are evaluated in the spectral space and updates

are performed on the expansion coefficients of u(x, t). On the other hand the

non-linear terms are evaluated in the physical space and then transformed

back to the spectral space. The needed transformations are all efficientlv

(lone by the means of the Fast Fourier Transforms.

In a variation on the usual formulation we have used the vector expansion

set

1UI,(x) 2, exp(in • x) (3.2)

where Ili is t he integer waveji III lnl)1" l~ir ( 7111 . 2). 1 si isi (UCh ;I I Nasis We ,a 11

expand tihe velocity field u as

u(x.) -< > ,,,(f)H1,,(x.
|11



where the sum is performed over all the components of the wave vector m.

The basis elements are easily seen to be divergence free,

V-. Bl = 0 (3.4)

and complete in the space of square integrable 2w-periodic divergence-free

vector functions. An advantage of this formulation is that gradients of scalar

functions (such as the pressure term in the Navier-Stokes equations) are

orthogonal to the divergence-free space 34 and so a result of a Galerkin for-

mulation is that pressure is eliminated entirely from the problem. A compu-

tational method of this type was used be Leonard and Wray3 5 in their study

of the stability of pipe flows.

Throughout our study the underlying forcing frequency was taken to be

n=4 and so that the critical value of the bifurcation parameter Q is

- 4V2_. (3.5)

Furthermore, we shall be interested in the long-term, asymptotic behavior of

the flows developing from the primary flow

sin .y= U- f e,(3.(;)

wxliich is a fixed point solitioni of (2.8,9). To facililtate this siudv we use a

smlall fixed perlirlbatlioti of the priimary flow inclIllg all posit Ive all( Ilega-

tivC wawCIIIIIbers as the Initial conIdit olo s for t lie caih'ilatiolls. Ill parl icllar,



we set

1 10- 4

u(x,0) = sin 4ye,+ 2 Z [(1 + i)Bm(x)-(1-i)Bm(X)] (3.7)
M250

If we write

uo = (uO, vO) (3.8)

then for example u, has the form

u,, 1 sin 4Y+10 4  m2 (cos(Inix + Mf2Y) - sin(mix + n72y)
Q rn2_> IO

(3.9)

The computations were performed for the range

Q/Q, < 12.5 (3.10)

After allowing a considerable time for the calculation to settle down (on

average 5000 time units), we examine the resulting flow on the attractor. It

was found out that a 32 x 32 spatial grid was adequate for the resolution

at the ratios (3.10). Two types of dealiasiug were used during the course of

the simulation as were grid i of twice the resolution. Neither were found to

significanitly alter the ,-,sults.

9



4 Tools of the Analysis

I lere we b~riefly comment on the tools used in the anial \'sis of the di-

rect nutmericalI sh ut "M on of the Kolmogorov fHow. 11wli tools nvvdIe I w~ thle

I inves gatin can he grou ped accordinug to their function.

4.1 Temporal Power Spectra

NWe need some mathematical tools to distinguish between chaotic and

qiiasiperiodlic regimes of the flow. The temporal power sp~ectra (PS5) are

indlispensable for this purpose.~

Let P((L))denote the temporal PS of the tinue signal 2().It follows

from equation (3.3) that there are 322 = 1024 individual time histories avail-

ab~le for the use in the temp~oral lPS. For the p~rolem ait ha 111d. We (lefi ne

the energy I~S box averaged per I?, wavenuruher in x-(lirection as (titodulo

a multiplicat ive normialization)

lit other words, we taike the temporal Ps of all the tintec histories resuilt-

in g fruom th e p)roject ions, onto hasis fui rio ol (3.2 ) whtjich QUO tinot in lip,

T~aeiitt~l~iPa~ ili III - - (Ont. "1t2 ) and~ a"T'ay~ (Ivet livint IhiK k in 1 n,

tra-l 4is l 4)t1, tho a il oo jijol at i' itt. In II o o 1 a theit we o it(lw l 'Ott IvI 1tA

I ()



zero and use the resulting templIoral power spectrum to distinguish beCtween

chaotic and quasiperiodic regim-es of the flow.

For later reference we remark now that since the P~S is the Fouier tranis-

form of the autocoiirelationi it follows that as the frequency I f 1--+ 00 the PS

vanishes faster than any inverse power of If 1.Ihis is a simple consequcnce

of the fact that in any numeirical simulation we are integrating a system of

ordinary differential equations with smooth direction fields and hience the

solultion is C--" in the time variable.

4.2 Poincare Sections

\Ve use Poincare sect Ions to study geometrical structure of the attractor

and to qualitatively discuss its degree of complication. Methods for the

calculation of these sections have been given by IKeefe' and others. The

pims( space employed In the calculation of the Poi ncare sect ions is spannedl

by the spatial Fourier mnodes of t lhe solit ion ii(x, 1)

wVhiie tI,,, and~ 3 r11 ;ire comp1llex.

The chIoice( of I lle sect on irigplai for thle [WI mo,,orov How eonCS vr

mii ot ant, fmr it det(rinirle-; wh'ic ;m l a t r rfati 1 ,( , r ()Ve((d b 1 cli

si 1 \. 1. w ;1.( 1111111 cIall ourerli N61t 111 t 6,11iua;11 u tr of t ho ;It

t r C()I' IItSel'f. ( i Xj eiWildit 1 (5toc acuiui . 1;1!( ltit iouu l ((l(t Ii OIf



points for a highly resolved Poincare section beconie considerable. Therefore

a need arises for the use of the discrete symmetry group of the flow to extend

the available data. This in turn suggests that some care should be exercised

in the choice of a sectioning plane. In particular, an acceptable choice is a

plane which is invariant under the symmetry group. It, is also a good practice

to choose as a section, a plane for which the flow projections maximize the

energy. With that in mind, we take the forcing function plane

I,7((o)) = D (4.3)

,7(TI(o,4) > 0 (4.4)

as our invariant under the action of the symmetry group section plane for the

Poincare sections used later. The choice of the constant D controls apparent

positioning of the hyperplane in the phase space and is dependent upon Q.

III actual calculations, we consider a series [!m(uo0,)(t ))] ', of snapshots of

the variable 1W ( 0.)(1)). We then set D to its average, iLe.

1 N

D =- -Y) (4.5)
I:]

'l'e, lPoincare sections showi in lelater sections plot I'(,.) vs In(n(01)).

For flirt her rference, we. not(, here r)reselt al ion (Iof t ihe sy"iiriiet rv -roIp

(2.12.13) i1 t miiis (if 1lic S)(tral cOnil)Oi('its of Iz(x.). If II(x,/) is rep

r,'(iit. l ds iII (1.2) t 1(ic the Adlide-reflect ion qii(x. f) (2.12) ran he wI- eii'n

IS

12



(4.6)

while the rotation Ru (2.13) is

In mn

It then follows from (4.5) and (4.6-7) that our sectioning plane is invariant

under the symmetry group of the flow.

From the examination of the equation (4.7), it is apparent that. the ro-

tation corresponds to the reflection around Imaginary axis for any -variable

Uin(t). On the other hand gl ide- reflection action (4.6) of the symmetry group

on U(O,l)(t) gives

This corrspoiIlds to 15 r-otation1 in I?( (oi()) -1( ui)(t))plaIIV. Thius
4

the dliscrete symmeitry group of the flow induces an extra syimnetries onto

7
IJ)()plane. T[hey correspond to the reflect ion around 7' = 0. L,. 2,3

;iXiS. 'I'lese SYIIIIIet ries figure pronulilientlY InI the (liscui~ssioln of I Ile lvslults of

WH' filli HIneIAa Isfinl innl

1 3



4.3 Lyapunov Spectrum

All of the mathematical tools mentioned above can Indicate the p~resenice

of chaos )in the dynamical system, but do not. directly address the ee of

randomnness preseint, or hiow chaotic a solution is.

We compute the Lyapuinov exponenits for the two dimensional NvI\,er-

Stokes equations (2.8,9) to study the dimension of the attracting set of the

chaotic flowv. We write the governing system in sym-bolic form as

du
(It -- (11(.1.9)

and1 denote a reference or fiducial traject oryvb I-10'. If an mIitimally ia l

trajectories is written ais

ti = U + (V(1. 10)

then inI thme Ii mit (~0, v stisfies the variational equation,

(I V Cu)

where

is eailylH ob)amied th~rougah the( I imicami/iz;tuI

Thei l;1rlgesI. Llplmov (cXJ)onv(ill is dl'linie' theI( ia~llil ~ju~~ i

rati' M whichl iwteaihv t Ia j(tohIi('s d' lively'

A, 'iiii II liiIV~(T)II(1 :)
ST



Thus the idea of a Lyapunov exponent can be regarded as a generalization

of the stability exponent of an equilibrium solution, and finding a positive

Lyapunov exponent is an unambiguous signature of a chaos.

In a practical sense we expect all initial data, v(O), to lead to A,, i.e.,

as time evolves v will become parallel to the direction of greatest growth.

Thus to obtain the next greatest growth rate, and so forth can be a touchy

problem. Algorithms for calculating these has been given by Bennetin et

a]17 , Shimeda and Nagashima' s and Wolf et a13 9 , and are further explained

by Fitzmaurice4 ° . The essence of the trick lies in computing volumes of

infinitesimal ellipsoids. In fact if c,(r) denotes the volume of an n-ellipsoid

it then follows that

A, + A2 +... + A, = lira 1 In c,(T). (,1.1,1)
TrCO2, T

Thus after (4.13) one calculates A1 + A2 , then A1 + A2 + A3 , etc and thereby

the spectrum A,, A2 .,....

Since the system in question is dissipative we know that the sum (4.14)

will become negative for n large enough. And since it is chaotic it must )e

positive for 7 = 1. Threfore this stm imi,- Cross zero at some point as one

inCreas(s n. One may tlien use tilie forintili of laplan and Yorke 22

(I X\ 1.15)



to estimate the dimension, dL, of the attractor where N is the largest integer

for which the sum is positive. Constanitin et a1 have shown that the Kaplan-

Yorke formula gives an upper b)ound for time Ilausdlorf dimension).



5 Results

In this section we present the results of our direct numerical simulation

of the Kolrnogorov flow. We have found that there are two main regimes

of the flow corresponding to different ranges of the bifurcation parameter

Q. Tentatively these are termed as being the regimes of small and large

scale structures. Explanation for this terminology will be evident from the

streamline plots to be discussed.

5.1 Small Scale Structures

0 < Q/Q < 1

For this range the asymptotic solution of the N-S equations (2.8,9) is

the fixed point (3.6). Streamlines and vorticity plots for the parallel shear

flow in horizontal direction are shown in Figure 1.

1 < Q/Q, < 1.97

As we increase Q2, the horizontal shear flow becomes unstable and the

flow pattern changes. At l/Q = 1, the parallel shear flow bifurcates to

a new soluition. In this range the motion is steady a(d tirly cellilar and
ilIlsit ions of this are shown in ligres 2 and 3. II is interesting to note tlhat

at the lower range of the parameter Q the flow is almost hiorizontal (Fig ire

17



2a) while at higher values of Q in this range the motion is mainly in the

vertical direction (Figure 3a) with well defined cells. In the first instance the

saddle points of the separatrices are formed horizontally while in the latter

case they are joined vertically. This is in an agreement with the experiments

of Bondarenko, et a142 for a iagnetohydrodynamic problern under similar

forcing.

1.97 < Q1/, < 2.22

In this range the flow still have the steady cellular structure but the

number of cells in the horizontal direction have doubled. The new flow

patterns are depicted in Figure 4. Explanation of this phenomena relies on

the fact that. the horizontal wavenumber of the fastest growing mode changes

from 1 to 2, also reported by Green16 . A very important feature of the flow

in this and previous ranges is that it is invariant under the discrete symmetry

group transformations. By invariance we mean that for any transformation

G' in the discrete sinnimtry group of the flow there is 0 < I < 27 such that

T7Gu = u (5.1)

wlere I is ;1 lr;lIsl/It loll by I ill r-dirction and u is ;1 solitilwi of N-S eqa-

fibols (2.S.9). [it words, we sa\Y ihat Own flow is invarianllld th, i screte

syllinel r\v grollp if. after al; )licalloll of any trallsforiiIt ],)It from I Ile discrele

i8



symmetry group to the flow, we can translate the transformed flow in lior-

zontal direction in such a way that it coincides with the original flow.

2.2 < Q/Q< < 3.53

As Q increases, small amplitude perturbations at the saddle points

will lead to the destabilization and eventual breakdown of the steady cellular

pattern. At Q/, = 2.2 another bifurcation in parameter space takes place.

For Me range under discussion there is a gradual breakdown in the symmetry

of the flow. The new flow patterns are depicted in Figure 5. It is perhaps

remarkable that these cellular structures are still steady.

3.53 < Q/ _, < 3.6

At Q/9, = 3.53 the statistically stationary flow is no longer steady.

Now, the flow spends most of the time in the steady cellular state shown

in Figure 5. lut from time to time, the flow is intermittently disturbed by

a random horizontal shift s occuring on a very rapid time scale. Ille tilme

l)etw(xen irsts is verv long and is a decreasing function as the paraneter

Q reaches tHie upper e i of the range. Fligure 6 shows IHe timne series of

tc.'(u . 11) ). lc, tl} platiaus cories)ond to a steady cellular state. Aflr Ili,

horizoital shifl, ti cells o)scillate with a small anliplitilde for a sliort w ile

1)



and then settle down very rapidly to a steady pattern before undergoing the

next horizontal shift. This state is chaotic but only over a very long time

scale, i.e. the Lyapunov spectrum has some very small positive exponent.

3.6 < P/c < 4.47

In this range the nature of the flow changes once again. We now find a

periodic oscillations occuring in the cellular structures as depicted in Figure

5. Also, the solution develops a slow drift in horizontal direction, but without

a net transport off mass. The drift may be regarded as the wave motion. It.

also follows from symmetry that the drift wave can move in either direction.

We conclude from Figure 7 which shows the temporal power spectrum that

there is a principal frequency, the large peak, and subharmonic frequencies

of it present in the flow. These correspond to the oscillations of the pattern

around larger vortices and inner oscillations of the vortices themselves. It is

interesting to note that we have found no regime of the flow when only the

)rincipal frequency is present.

4.47 < Q/Q, < 4.58

Now, the flow enters i ts second chaotic regi e. Figrre S depicts ;i

."pical time series of the signal /(j. ) in this range, from which wC COWL

20



clude that the chaos is intermittent. Examining the power spectrum shown

in Figure 9, we see that the principal and subharnonic frequencies are promi-

nently present in what is a broad band spectrum. We did not attempt to

calculate the Kaplan-Yorke dimension for the dynamical system in this range

of Q because of the very long time interval between the bursts of activity in

the flow. A most remarkable feature of the flow in this range is that the

chaotic attractor is not ergodic! The dynamical system has several chaotic

attractors each with its own basin of attraction lying quite close to the fixed

point (3.6). On the basis of extremely long calculations we conclude that

these attractors are not connected. Figure 10 shows the Poincare section

depicting cuts of the chaotic attractors. Two darker points in the blown up

section Figure 10b correspond to the punctures produced by the solution in

the laminar phase of the intermittency. In actual calculations we obtain only

one of the attractors (depending on the chosen initial data) , and the rest

are obtained by using the discrete symmetry group. Alternatively, we can

apply the symmetry group to the initial data and thus generate each of the

attractors. Another peculiarity of tHie flow is that there are only eight sym-

metric attractors instead of sixteen as )reict(Nl b" the discrete syimetry

groi p. 'l'iis 1lappens becaluse the action of fi\ve " 11de-rellections followed bv

le rot ll i 1l bV 7r a,))lield t.o the sollt iol ui1aps le t rilIcI 'o onto itself. This

inltuices all extra syuniietry inlto the at I actor Corrls5pondhing to t ie reflect Ion

21



around the axis denoted by the dashed line in Figure lob, as it is discussed

in the earlier part of this paper dealing with the 1Poincare sections.

4.58 < Q/R,. < 4.65

As Q increase, different symmetric attractors start intersecting each

other and now the flow is intermittenly chaotic with one ergodic attractor

consisting of eight connected symmetric components. Figure 11 shows the

time series of Ic(v(o,j)). The evidence of the intermittent bursts is clearly

present and sudden jumps correspond to the solution jumping to a different

component of the attractor. We present the temporal power spectrum in

Figure 12. This new state is more chaotic than the previous case, but still

there is evidence of the principal frequency from the lower parameter values.

The Poincare section is shown in Figure 13 ("butterflies" section). Darker

regions in the blown up section of the attractor in Fligure 131) correspond to

the points where the solution spends most of the time bet ween intermittent

bursts. Moreover, comparing Figures 13 and 10. we notice t ia the main

fea, ures of the noji-,.rgodic attractor are still l)reselnt.

.e5 .f r o/l I,. I w_. ,I.71i t

.. III,,11 ,.r p -,'ll a leI, fe'atur,, of the lltm,.*,r , PIw i . 111 11 cf)III1 'r
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to intuition, the paramieter space Q contains windows of relamninarization1

between different chaotic ranges of the flow. This range is an examiple of

one of such wind~ows. Here, the flow returns to a periodic regime with a

pi-Incipal and suli~arnmonic frequencies in the power sp)~truni. Again. there

is no regime with just, one frequency. This flow is similar to the range 3.6 <

f1/f, < 4.47. It also, develops a slow seady drift in the horizontal direction.

We also note that this drift appears to vanish in the chaotic windows of the

flow.

At Q =4.72Q, wve see the formation of large scale structures.

5.2 Large Scale Structures

Although we are mainly interested in the asymptotic behavior of the

lKolmogorov flow, it is of interest to examiune how the large scale structures

are formed. The process is basically the same for all -values Q~ > 4..2Q,,

We start witli a snmallI pert urbat ion of the fixed point, flow (3.6). 'Is Issatec

persist~s for roughil ie tinme scale p~redhictedl by the l inear st abilityv aii alYsi.

Then or) a very rapid t iine scale the flow changes to the unsteadyV cellular

p~attern of thle sort illiist rated Ini Figuire 5. ibis state witli manY siall cell]s

persists for a vr shiort tuel( a ii I hi( il t lie flow ph n 1sito chaos Ilie\%

state Is \igolroIISIV (laultt 1c, cliaracter-izel hY t 'lc rapl jl In tlIt s 4 ;Il

vortical stiict tires, a sna ipslI()t of hch i sownl i lge 1 1. hR\ I Igh
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count it is seen that the same number of vortical structures appears in Figiire

5 and 14. We refer to this state as metastable or transient chaos following the

terminology of Grebogi, Ott and Yorke4". Of all the chaotic states observed

in our numerical experiments, this is the only state which can be called

chaotic both spatially and temporally and hence is turbulent according to

common convention. At the lower range of Q this metastable chaos holds for

a relatively long time, while at a higher values of the bifurcation parameter

Q it can be extremely short.

In any case the phase point finds an escape hole in the metastable attrac-

tor and we eventually see the formation of a large scale structures such as

those depicted in the Figure 15. The new attractor is stable. Considerable

vortex merging has taken place in passing from Figure 14 to Figure 15. The

two large structures shown in the streamline plot of Figure 1Sa are some-

what misleading. On a closer examination of the vorticity plot, we see that

we have roughly the same number of distinct vortices as before and that the

large structures in the streamline plot consist of a number of a counterrotat-

ing vortices. These new large scale structures are completely different from

the small scale struct lres wlic h we dealt in the previolls siibsectioi. 'X iiii-

thing the \ortieity plot slhow ( iIn tFiglre '1). we not ice I hat, at t Ile sin;I 1 rahls

the Vor tI'. ar allged ' iii a 1 i? t','. 'I'llils, t I, IItI 't";,1 >Iinall scale S t111 re.

flow can le ()1 iShered s ,.'lII (llons ,, "ler,. l hg" of I c lIa ce st Il c II re.
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In tile metastable regime this lattice structure is broken, and we have a soul)

of vortices moving randomly around. Later the vortices merge together and

arrange themselves on a curved line with two vortices containing most of the

circulation. These vortices correspond to the eyes of the large scale struc-

tures depicted in the streamline plot of Figure 15a. It is of interest to note

here that the vertical position of the eyes of the large scale structures are at

hyperbolic points of the forcing functions when the flow is not chaotic.

We will now describe in detail the bifurcations occuring in the large scale

structure regiie of the flow.

4.72 < Q/Q, < 5.9

In this range the flow is periodic with one fr'equelncy. In addition, there

is a horizontal drift present in the solution as also noted by She26 . As Q/Q

approaches 5.9 both the frequency of oscillations and drift speed apl)roach

zero. Figure 16 shows the temporal powx'er spectruin.

S=5.9Q,

A\ Q = 5.9 the flow reaches tli, stealy. spaltally (isOIgani'/ed slate

dlep~ic'ted[ Ml l ,ure 15. Th I' v i\ <h'111Yt IIIv ithe< ,- ~ l ltn n

2.71



5.9 < Q < 9.4 7

A.'s we start increasing Q further, the flow develops 1b0th periodic oscil

lations and a slowN, drift in the horizontal (direction. The (lirection of the drift

chianges according to the particular attractor the flow settles in. Moreover,

as Q increases, so does the drift speed and frequency of the oscillations. The

periodic oscillations canl be described as the "breathing" in the inner shells

of the large scale structures. At Q =9.042Q, a period dloub~ling bifurcation

takes place in the oscillations of the inner structures. Now the p~rincipal and

subhiarrnonic frequencies correspo~id to the breathing of the large scale struc-

ture itself and~ the oscillations of the inner shells. This reglime persists up

to 12 9.45Q, where another period doubling bifurcation in the oscillations

takes place. \Ve can see clearly the princip~al and subliarmronic frequences ini

Uigu re 17 shiowinig the temiporal powx~er sp~ectrum i of the flow.

At .41-?, thI e flow~ (,nters mnother cliaot i( reginme which (Tout ifillfes

uintil Q) reachles !)(fU1 W gainI finid thc reminarlLe fealt ure ini tis wn

dhm w t haI iii('i(. l. chatl)>' 1)111 t 1lI t te a] tran lw airt 1)(01- ?nlt Ill e

( i !i I prt'sei m O I ht rit'miia hr-cat Iiv--Ilko '(~il 1;I'tfl ()f tIli, 111(I IIE

1nt-'s w\'iicl fiuiuhices r wult~iuciltlolls of* l~ir u? ?jt i'.\'t>m
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inI Figure 18, which shows the temporal power spectrum, that the driving

frequency and its subliarmionics still dominate the motion. Horizontal drift

diminishes to a trickle and sometimes changes directions. On average, there

is, no drift at all. Figamre 1 9 dlepicts the Poincare section of the attractor

showing eight symmetric disconnected attractors. The slopes of the lines in

Figure 20 correspond to the values of Lyapunov exponents and the calculated

IKaplan-Yorke dimension is 7.9.

9.66 < Q/Q, < 10.805

At Q =9.66Q, the flow enters another laminar window in the pa-

rameter space Q. Here, the solution slowly drifts in the horizontal direction

and ha~s the principal and suhhiarmonic frequencies. At Q/Q, 10.4 a pe-

riod doubling bifurcation takes p)lace. Figure 21 shows the temporal power

spectrum at Q = 10.7Q,.

10.805 < Q/Q, < 12.5

As we Increase Q eVeni further, the flow,, enters aniother chaotic regime at

Q =-10 .805Q,. 'lme flow niow a ppears to b~e goverliedl by a II ergod ic a ttractor

which cliiists of (ight. syiiit rica! Coiii1 )ollis am!d thle Sohiit.ioiil (flrilit-

tenit!) jilimp's from olie ('&)iiI)lliit. to atiot hcr. Thiere is a \VrV loll t inn'



delay between successive jumps at Q slightly greater than the 10.805, but

it rapidly decreases as fQ increases. The driving frequency and its subhar-

monics dominate the power spectrum shown in Figure 22. An examination

of Figure 23 showing the Poincare section of the chaotic attractor, indicates

that the components of the attractor have a fractal structure. The calculated

IKaplan-Yorke dimension is 8.9. Another interesting point is that the direc-

tion of the drift changes with each successive jump to a different component

of the attractor.

As we continue to increase Q, the different components of the chaotic

attractor merge together and become indistinguishable. Nevertheless, the

driving and subharmonic frequencies are still dominate the temporal power

spectrum shown in Figure 24 for Q = 12.5Q. Now, the Kaplan-Yorke di-

mension increases to 10.8. Thus we might hope to describe the system in

terms of a dynamical system having many fewer than roughly 1000 degrees

of freedom that we have been allowing in otir spect ral siintilations.

As in the case of the small scale structures, the average drift speed di-

niinishes to zero for the chaotic regimes anld the (]rift is not present at all for

Q > 12.5Q,..

T i5 Olis cn I'hld ()II (-lr detiled d('scripti(oi of t 11 c ovi , f t ]I(- fixed pl Oitl

(:3.6i) of fit, l\,,IrllIgorov flow ;is ; f 1i ,h ,f ll lifii- t ,,1 lIlnletl.or Q.
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6 Summary

In this paper we investigated in some detail a simple fluid flow governed by

the incompressible two-dimensional Navier-Stokes equations with a spatially

periodic time independent forcing. Two main regimes of the flow have been

observed: small and large scale structure regimes corresponding to different

ranges of Reynolds number Re. A sequence of bifurcations takes place in

each of the regimes of the flow.

The first three bifurcations taking place in the small scale structure regime

are steady: the first corresponds to the appearance of the cellular structures,

the second doubles the horizontal wavenuniber of the cellular structures,

while the third breaks the symmetry of the flow. In addition, three chaotic

windows are discovered in the small scale structures regime. The first window

is chaotic over a very long time scale. The second window is an intermittency

with a remarkable feature that the chaotic flow has non-ergodic attractors.

Finally, the last chaotic window shows intermittency with one connected

chaotic attractor consisting of eight symmetric components ("butterflies").

There are laminar windows between the first arid the second chaotic regimes,

an d after the last chaotic regime.

'le l a rge s(ale structure regime contains a iiiinber of quasi-p)eriodic and

chaotic winidows. Before the formation of ilie large scale struiclurcs, tlie flow

29



spends considerable time in metastable chaos which approaches true turbulent

flow for the range of Re under the discussion. A spatially disordered, but

temporally steady state was observed between first two laminar windows.

Two period-doublings take place in the second laminar window. The chaotic

regime which follows has the same remarkable property of chaotic but non-

ergodic attractors as is the case with the small scale structure regime. In

addition, there is a window of relaminarization with a quasi-periodic flow

between the two chaotic regimes.

In the future, we plan to use the proper-orthogonal decomposition 44 to

extract the coherent structures of the flow and study the resulting low order

dynamical bystems 5 .
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4. Steady cellular flow found at 11 = 2fl, with the motion mainly in ver-

tical direction and the fastest growing perturbation with wavenumber

2 in horizontal direction. b) vorticity.
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6. Time series of Re(u(o,i))(t) at 0 = 3.560,~ Plateaus correspond to a

steady cellular flow.
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7. Power spectrum of the velocity u at f = 411c. The principal frequency

and its subharmonic dominates the spectrum.
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8. a) Time series of Re(u(o,j))(t) at Q~ = 4.48R... The flow is intermittent

chaotic with long time intervals between the bursts of activity.
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8. b) blow up of a).
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9. Power spectrum of the velocity u at Q' = 4.4811,. The flow is chaotic,

but the principal frequency and its subharmonics still dominate the

spectrum.
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10. a) Poincare section of the chaotic attractors at = 4.4811, Attractors

are not ergodic.
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10. b) one of the attractors. Attractors are not ergodic. A dashed line

shows axis of symmetry of the attractor.
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11. a) Time series of Re(u(a,l))(t) at 11 = 6QC The flow ip *'iterrnittent

chaotic. The sudden jumps correspond to the solution jumping from

one component of the chaotic attractor to another.
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11. b) blow up of a.).
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12. Power spectrum of the velocity u at n 4.6311C.
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13. a) Poincare section of the chaotic attractor at 11 4.6311,. Flow inter-

mittently jumps fro&n one component of the attractor to another.

58



... , -. -t L.

13. b) One of the components of the attractor.
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14. Instantaneous flow pattern found in metastable chaotic regime at S,

Mr(. b) vorticity. The flow is both spatially and temporally chaotic,

and thus may be called turbulent.
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is. Steady spatiallY chaotic flow found at ~1 5 9fl a) streamlines. Also,

this is an example of large scale structures
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16. Power spectrum of the velocity u at fl = 5. Only one frequency

present in the problem.
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17. Power spectrum of the velocity u at f = 9.458fl.. Two period-doublings

have taken place.
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18. Power spectrum of the velocity u at 02 = 9.470c. TLe flow is chaotic,

but the driving frequency and its subharmonics are still dominant in

the spectrum.
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19. a) Poincare sections of the chaotic attractor at 0 = 9.47St,. Again,

attractors are not ergodic.
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19. b) One of the chaotic attractors.
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20. Typical curves for the Lyapunov exponents calculations. Here Q~

9.479, and dL 7.9.
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21. Power spectrum of the velocity u at 11 = 10.70,c One period-doubling

have taken place in the range 9.65 :5 Q/11, < 10.7.
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22. Power spectrum of the velocity u at Q1 = 10.805Qc. The flow is chaotic,

but the driving frequency and its subharmonics are dominant in the

spectrum.
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23. a)Picr scino hecatca-rco t11 1.0f,
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23. b) Blow up of one of the components of the attractor. The fractal

structure of the attractor is evident from blow up.
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23. c) Blow ups of one of the components of the attractor. The fractal

structure of the attractor is evident from blow up.
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24. Power spectrum of the velocity u at Q = 12.5ftc. The driving frequency

and its subharmonics are still dominant in the spectrum.
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